
On the Use of Sequence Mining within
Spectrum Based Fault Localisation

Gulsher Laghari
AnSyMo — Universiteit Antwerpen België

gulsher.laghari@uantwerpen.be

Serge Demeyer
AnSyMo — Universiteit Antwerpen België

Flanders Make — Belgium

ABSTRACT
Spectrum based fault localisation is a widely studied class of heuris-
tics for locating faults within a software program. Unfortunately,
the current state of the art ignores the inherent dependencies be-
tween the methods leading up to the fault, hence having a limited
diagnostic accuracy. In this paper we present a variant of spectrum
based fault localisation, which leverages series of method calls
by means of sequence mining. We validate our variant (we refer
to it as sequenced spectrum analysis) on the Defects4J benchmark,
demonstrating that sequenced spectrum analysis gains a 12% points
improvement against the state of the art.

KEYWORDS
Debugging; Spectrum based fault localisation;Method call sequences

1 INTRODUCTION
Software defects remain a primary concern within the software
engineering community [39]. Since the source code provides the
ultimate description of the behaviour of the system, it is there that
software engineers search for the the root cause of a defect— the
so-called fault— and fix it subsequently. Fault localisation is widely
acknowledged to be one of the more difficult and time consuming
steps while fixing defects and it is, therefore, a heavily investigated
research topic [33].

In this paper, we focus on what is known as spectrum based
fault localisation [3, 11, 30]. Spectrum based fault localisation, a
lightweight automated fault localisation technique, statistically
compares executions traces from both failing and passing test cases
to pinpoint a faulty program element. It produces a ranked list
of program elements, indicating the likelihood of a program ele-
ment being at fault. Spectrum based fault localisation comprises
three steps: (i) creating a test coverage matrix; (ii) deducing the
hit-spectrum, and (iii) applying a fault locator.

Today, most variants of spectrum based fault localisation focus
on step (iii), and experiment with different fault locator functions
(e.g., Ochiai [2] and Naish2 [21]). Recently, however, a new branch
of research investigated variations of step (ii) providing alternative
ways for deducing the hit-spectrum (e.g., time spectra [36], frequent
itemsets [15, 16], and method invariants [4]). This paper investi-
gates one other alternative for deducing the hit-spectrum, namely
sequence mining. As such, we make the following contributions.

(1) We present a variant of spectrum based fault localisation (re-
ferred to as sequenced spectrum analysis in the remainder of
this paper) which leverages series of method calls by means
of sequence mining.

(2) We use 47 known fault locators to create a suite of spectrum
based fault localisation heuristics— the current state-of-the-
art (referred to as raw spectrum analysis)— and evaluate them
on real faults. This sets the baseline for the comparison.

(3) We compare sequenced spectrum analysis against the raw
spectrum analysis using the Defects4J dataset [13].

(4) We use several evaluation metrics during that comparison,
effectively adhering to the concerns of absolute measure [22,
29], early precision [27], and total recall [27] which implies
a stringent comparison.

The remainder of this paper is organised as follows. Section 2 lists
the known variants of spectrum based fault localisation for compar-
ison, while Section 3 explains the details of the variant proposed
here. Section 4 describes the set-up of the comparison, which natu-
rally leads to Section 5 reporting the results. After a discussion on
the related work in Section 6 and the threats to validity in Section 7,
we come to a conclusion in Section 8.

2 BACKGROUND
Spectrum based fault localisation takes as input the faulty program
and a test-suite where at least one test case exposes the defect. It
produces, as the output, a ranked list of program elements where
the most suspicious program elements appear at the top of the list.

There are several concerns to take into account when apply-
ing spectrum based fault localisation on a faulty program. First,
it involves the decision to select a granularity level of a program
element. The choices for granularity include from fine-grained
statements to course-grained classes.

Second, the coverage of selected program element is collected
by running the test-suite for the faulty program. This coverage
is organised into a data structure called the test coverage matrix.
The rows in this matrix correspond to elements under test and the
columns represent the test cases. Each cell in the matrix marks
whether a given element under test is executed by the test case
(marked as 1) or not (marked as 0).

Third, the test coverage matrix is summarised into the hit- spec-
trum— a summarised abstract behaviour of the program. The hit-
spectrum of an element under test is a tuple of four values (ef , ep ,
nf , np). Where ef and ep are the numbers of failing and passing
test cases that execute the element under test respectively and nf
and np are the numbers of failing and passing test cases that do not
execute the element under test respectively.

Fourth, the fault locator function translates the hit-spectrum
into suspiciousness of the element under test. This suspiciousness,
which is function of the fault locator, indicates the likelihood of
the element under test to be at fault. Most fault locator functions
have a range in interval [0, 1]. Thus, the suspiciousness value for

SAC 2018, April 9–13, 2018, Pau, France 2

an element under test may have the lowest value 0 (not suspicious
at all) to 1 (highly suspicious). The underlying intuition is that
an element under test which is executed more in failing tests and
less in passing tests gets a higher suspiciousness and appears at
the top location in the ranked list. Sorting the elements under test
according to their suspiciousness in descending order produces the
ranked list. We refer to this kind of fault localisation analysis as
raw spectrum analysis.

When applying spectrum based fault localisation, there are three
avenues to improve the effectiveness of the heuristic. The first is
exploring the different levels of granularity of program elements.
The state of the art has almost explored all possible granularity
levels from statements [6, 11, 23, 31], blocks [3, 17, 19, 20],methods [4,
16, 30, 35], and to classes [9, 15]. In this paper, we select method-level
granularity for four reasons. (1) In object oriented testing a method
is the smallest element under test [5]. (2) Objects interact through
methods by following a certain protocol on the calling sequence
of its methods [32]. For complicated protocols this is a source of
subtle bugs which are notoriously difficult to resolve [12]. (3) A
method often provides sufficient context needed to help developers
understand a bug [4]. (4) Developers expressed a slight preference
for method-level granularity [14].

The second dimension is to optimise the fault locator function
which was untill now the primary avenue for improvement. The
efforts include applying functions used in the molecular biology
domain for fault localisation [3], applying association measures
from data mining for fault localisation [19], proposing fault locators
based on a theoretical model [21], and evolving a completely new
set of fault locators through genetic programming [38].

The third dimension, which has remained largely unexplored
up until now, is to try a variation of the hit-spectrum— the input
to the fault locator. Yilmaz et. al. for example adopted traces of
method execution times instead of a mere count of passing and
failing tests [36]. Dallmeier et. al. extracted sequence of method
calls by sliding a window over execution traces of classes to identify
faulty classes [9]. Similarly, we adopted itemset mining to pinpoint
faulty classes [15]. Later, we explored a variant of the hit-spectrum
adopting frequent itemset mining to localise faulty methods [16]. In
this paper, we present another variant of the hit-spectrum adopting
sequence mining to locate faulty methods.

Themotivation for exploring sequencemining in the hit-spectrum
is that in the traditional fault localisation, the hit spectrum only
tells whether or not the method is involved in a test case. However,
it ignores the inherent dependencies between the calls leading up to
the fault. In particular, branch conditions, data inputs, or exceptions
thrown may be the real cause for deviating behaviour of the failing
test [9]. Since fault localisation has access to the complete call trace
anyway, it is relatively easy to incorporate information about the
call sequences itself. Consequently, we modify the hit-spectrum
by adopting sequence mining, referring to this kind of fault local-
isation analysis as sequenced spectrum analysis compared to the
traditional approach referred to as raw spectrum analysis.�
�

�
�

The hit-spectrum in raw spectrum analysis ignores the inherent
dependency relationships between the calls leading up to the fault.
In sequenced spectrum analysis, we modify the hit-spectrum by
incorporating series of method calls mined from the execution traces.

3 SEQUENCED SPECTRUM ANALYSIS
Here, we briefly describe the steps in our sequenced spectrum
analysis. We run the test cases on a faulty program and in each
test case, (1) collect the traces for each executed method of the
project (Section 3.1), (2) mine the call sequences from these traces
(Section 3.2), (3) calculate the hit-spectrum (Section 3.3), and finally
(4) rank the methods (Section 3.4) according to their likelihood of
being at fault.

3.1 Collecting the Trace
In each test case, during the execution of a method, we intercept
each method call directly originating from the method and record it
into the trace. The intercepted call can be a call to a project method
or to the external library method. Note that we incorporate calls
to the constructors, hence have knowledge about the creation of
objects as well.

A trace is collected by introducing the logger functionality into
the base code via AspectJ1. More specifically, we use method execu-
tion and method call join points. For a method execution join point,
there are two advices (before and after), while there is one advice
for method call join point. In the before execution advice, a trace is
initiated for the executed method. In the before call advice, which
picks out every call site, we collect the names of both callee and the
caller method and add the called method into the trace of the caller
method. Finally, in the after execution advice, the current trace for
the method is closed. To save the memory, we assign unique integer
identifier to each executed method and add the identifier to the
trace instead of the name.

As a method can also execute one or more times in a test case,
we separate the call traces for each execution. Thus, the complete
trace for a method m() in a test case T is represented as a set
Tm = {t1, t2, ..., tn }. Where ti is a list of the method calls invoked
directly from method m() during its ith execution. This implies
that the calling relation is not followed transitively but is terminated
after one level. If method m() in Listing 1 executed twice in a test
case T , its trace would be Tm = {⟨m2,m3⟩, ⟨m2,m3⟩}.

Listing 1: Example method
1 public void m()

2 { m2(); m3(); }

3.2 Obtaining Call Sequences
Once the call traces are collected, we mine the sequence of method
calls from the traces of a method. Normally, a method executes only
once in a test case resulting into only a single trace for a method
(|Tm | = 1).

Hence, we adopt the MARBLES algorithm to mine the call se-
quences from the method call traces [8]. This algorithm mines
general, parallel, and serial episodes (subsequences) from a large
sequence (a single call trace in our case) sliding a window of fixed
size. Since we are interested in an order-preserving sequence of
method calls, we only use the serial episodes. From here on, we
refer to these episodes simply as sequences. In this experiment, we
use a window size of 8. We restrict the window size to 8 inspired by
Dallmeier et. al. who found that increasing the window size beyond

1http://www.eclipse.org/aspectj/

http://www.eclipse.org/aspectj/

On the Use of Sequence Mining within
Spectrum Based Fault Localisation 3

8 did not increase effectiveness of fault localisation [9]. Also for
window sizes greater than 8 when applied on long traces, MAR-
BLES takes a long time to produce a result. We apply the algorithm
to translate the complete trace Tm for a method m() obtained in a
test case T into a set of call sequences STm . Thus, for each call trace
ti ∈ Tm as input, the algorithm produces si a set of call sequences
as output. Note that the method trace may comprise a call (or a
series of calls) to a single method. In this case, MARBLES outputs
an empty sequences set since a sequence must contain at least two
distinct items. However, we record the single call as sequence, since
it can be useful to tackle API violations like open-close principle [25].
The si is a set of unique call sequences X. The final set of the call
sequences STm (Equation 1) for the method m() in test case T is
the union of the set of call sequences si .

STm =
n⋃
i=1

si (1)

3.3 Calculating the Hit-Spectrum
The call sequences of a method m() in sequenced spectrum analysis
are obtained by running the set of failing test cases (denoted as
TF) and the set of passing test cases (denoted as TP). We obtain
a set of call sequences Sm (Equation 2) for each method. The call
sequences set Sm is the union of (i) the call sequences of a method
resulting from the failing test cases (STm : T ∈ TF) and (ii) the call
sequences resulting from the passing test cases (STm : T ∈ TP).

Sm = {X|X ∈ STm ∧ T ∈ TF } ∪ {X|X ∈ STm ∧ T ∈ TP } (2)

The set Sm (Equation 2) is used to construct the test coverage
matrix for a method. The hit spectrum is then calculated for each
call sequence X in set Sm from the test coverage matrix.

3.4 Ranking Methods
To produce a ranked list of methods, first each call sequence gets a
suspiciousness score. Then, a method gets the suspiciousness which
is the maximum suspiciousness of its constituting call sequences.
The details for these steps follow.
Suspiciousness per call pattern. Based on the hit-spectrum cal-
culated from the test coverage matrix for each method, each call
sequence X ∈ Sm (Equation 2) gets a suspiciousness score Susp(X)

calculated by using a fault locator.
Suspiciousness per method. Each method m() gets a suspicious-
ness Susp(m) which is the suspiciousness of the call sequence X
with the highest suspiciousness (Equation 3). We choose the max-
imum (instead of average) for the suspiciousness score because
the technique is looking for exceptional sequences: one unique
and highly suspicious sequence is more important than several
unsuspicious ones. The methods with an empty call sequence get
suspiciousness 0.

Susp(m) = max
(
{Susp(X) | X ∈ Sm }

)
(3)

Ranked list. Finally, a ranked list of all executed methods is produced
by sorting the methods on their suspiciousness Susp(m) such that
methods with the highest suspiciousness appear at the top.

Table 1: Descriptive Statistics for the Projects Used in Our
Experiments

Project # Bugs Source KLoC Test KLoC # Tests
Math 106 85 19 3,602
Lang 65 22 6 2,245
Time 27 28 53 4,130
Chart 26 96 50 2,205
Closure 133 90 83 7,927

4 EVALUATION
In this section, we provide the details of empirical evaluation on
how far the two variants (raw spectrum analysis and sequenced
spectrum analysis) can improve the fault localisation.

4.1 Dataset
For this empirical evaluation, we use real defects which have been
collected by Just et. al. into a database called Defects4J2 (a database
of existing faults to enable controlled testing studies for Java
programs) [13]. Defects4J version 1.1.0 contains defects from 6
open source java projects: Apache CommonsMath, Apache Com-
mons Lang, Joda-Time, JFreeChart, Google Closure Compiler,
andMockito. In our study, our tracing system could not be used
with Mockito, hence this project was excluded from our study. The
descriptive statistics of 5 projects are reported in Table 1.

The database contains meta info about each defect including the
source classes modified to fix the defect, the test cases that expose
the defect, and the test cases that trigger at least one of the modified
classes. In this evaluation, we use 346 defects which are located
inside methods or constructors.

4.2 Evaluation Metrics
Fault localisation heuristics produce a ranked list of elements un-
der test; in the ideal case the faulty unit appears on top of the
list. Several ways to evaluate such rankings have been used in the
past, including relative measures in relation to project size, such
as the percentage of units that need or need not be inspected to
pinpoint the defect [30]. However, absolute measures are currently
deemed better for comparison purposes [22, 30]. The most com-
monly adopted metrics are wasted effort, acc@n, and mean average
precision [4, 27, 30, 35]. Consequently, we will use these metrics for
our comparisons.

To deal with defects spread over multiple locations, we evaluate
from the perspective of a best-case debugging scenario as argued
by Pearson et. al. [23]. In such a scenario identifying one of the
possible locations is good to understand and consequently repair
the defect. Indeed, once the first faulty element is located it will
help developers to find the remaining ones [27].
Mean Wasted Effort (MWE) — Smaller is better. The mean wasted
effort is the simply the mean of the wasted effort in all ranked lists.
Thewasted effort is an absolute measure which indicates the number
of non-faulty methods to inspect in vain before reaching the first
faulty method. It is computed as follows:

wasted effort =m +
n

2
(4)

Wherem is the number of non-faultymethods ranked strictly higher
than the faulty method; and n is the number of non-faulty methods
2http://defects4j.org

http://defects4j.org

SAC 2018, April 9–13, 2018, Pau, France 4

with equal rank in the ranked list to the faulty method. This deals
with ties in the ranked list.
acc@n —Higher is better. This is the count of all the faults successfully
localised in top-n positions in the ranked list. Inspired by Le et al. [4],
we also choose n ∈ {1, 3, 5}, thus effectively creating three variants of
the acc@n namely acc@1, acc@3, and acc@5. It is not uncommon for
twomethods in a ranked list sharing the same suspiciousness scores.
Hence, while computing the acc@n, we break the ties randomly.
Mean Average Precision (MAP) — Higher is better. The mean aver-
age precision has traditionally been used in information retrieval
to evaluate the ranked lists and is also adopted for studying fault
localisation. It takes all faulty elements into account and empha-
sises recall over precision. Thus, it is suitable in scenarios where
developers search deep in the ranked list to find more relevant
faulty elements [27]. The mean average precision is the mean of
average precision in all ranked lists. The average precision in a single
ranked list is calculated as following:

average precision =
M∑
i=1

P(i) × pos(i)

number o f f aulty methods
(5)

Where: i indicates the position of a method in the ranked list;
M is size of the ranked list (number of methods ranked); pos(i) is
a boolean indicating whether or not the method at ith position in
the ranked list is faulty; P(i) is the precision at ith position in the
ranked list, computed as P(i) = # f aulty methods in top i

i .
Our use of several metrics together evaluates fault localisation in

several contexts.Wasted effort does not normalise the rank of faulty
methods with respect to total number of methods in the program.
Thus, it is inline with recommendations of Parnin et. al. [22] that for
the fault localisation to be useful for developers the aim should be to
improve absolute rank rather than percentage rank. In their study,
they found that developers switched to other means of debugging
when they did not find faulty statements within the first few top
positions in the ranked list. The same concerns are also addressed
by acc@n. However, when developers want to search deep in the
ranked list to find more relevant faulty methods, mean average
precision is suitable in this context [27].

4.3 Experimental Protocol
To compare the two variants, we use faulty version of each project.
Then, we run each spectrum based fault localisation for all relevant
test cases, i.e. all test classes which trigger at least one of the source
classes modified to fix the fault as recorded in the Defects4J dataset.
As such, we obtain ranked lists for each of the 346 defects in the
dataset altogether and also organised by project (see Table 1). We
first compare the 47 fault locators within each spectrum analysis
before going into a more detailed analysis. We use five different
metrics for this comparison: Mean Average Precision (MAP), Mean
Wasted Effort (MWE) and acc@1, acc@3, and acc@5.
Best Performing Fault Locator.While comparing raw spectrum
analysis against sequenced spectrum analysis we use the best per-
forming fault locator for each case. To identify the best performing
fault locator, we first rank all 47 fault locators on each of the five
evaluation metrics and then compute the mean of the ranks. Thus,
the fault locator with the lowest mean rank— performing best in
all evaluation metrics— is selected as the best performing one.

Significance Tests.We perform statistical tests of significance for
raw spectrum analysis and sequenced spectrum analysis on the
evaluation metrics wasted effort (WE) and average precision (AP).
Since we have a matched pair design and we compare whether
one variant is better than its counterpart, we choose the Wilcoxon
signed rank test and run as paired one-tailed test.We favour the non-
parametric Wilcoxon signed rank test over parametric t-test owing
to small sample sizes and non-normal distribution of scores for both
wasted effort as well as average precision. As is common practice in
software engineering research, we set the significance level α of
0.05 (there is 5% risk of concluding that the two distributions are
different when in fact they are not).
Research Questions. In this evaluation, we address following
research questions.
RQ1. What is the baseline performance of raw spectrumanal-

ysis?
Motivation. We establish the best performing fault locator
and obtain the rankings for the 346 faults in the Defects4J.
This sets the baseline against which we compare.

RQ2. Howmuch can sequenced spectrum analysis improve
upon raw spectrum analysis?
Motivation. We establish the best performing fault locator
for sequenced spectrum analysis and obtain the rankings
for the same 346 faults.We compare these rankings against
the baseline obtained in RQ1.

RQ3. Are there project specific differences between the rank-
ings ?
Motivation. Inspired by the work of Zeller et. al. [40], we
investigate whether the results obtained for the whole
Defects4J data set apply to the various projects within that
dataset. This is to assess the robustness of our findings.

5 RESULTS
In this section, we discuss the answers to three research questions
introduced in Section 4.

RQ1 – To answer this question, we apply raw spectrum analysis
with 47 known fault locators on all defects together, thus aggre-
gating the results over all projects in the dataset. This allows for a
sufficiently rigorous analysis of the current state of the art and as
such establishes the baseline performance of raw spectrum analysis.
As mentioned in the protocol, we rank the fault locators from the
top with the best performance to the bottom with the worst.

Table 2 lists the fault locators along with their scores for five
evaluation metrics sorted on their rank (rightmost column entitled
R). Fault locators with the same rank are highlighted in the same
background colour. We observe in the table that GP13 and Naish2
have good scores for acc@1, acc@3, acc@5, and a better mean
average precision than M2 and Goodman. M2 and Goodman, on
the other hand, are slightly better in terms of mean wasted effort.
Studying the performance on each of the evaluation metrics, the
value of 63 for acc@1 tells us that for 63 out of 346 (18%) raw
spectrum analysis has an exact hit: the method containing the fault
is the first one in the ranking. Similarly, acc@3 (120 out of 346
is 35%) and acc@5 (142 out of 346 is 41%) demonstrates that the
fault locators perform reasonably well in many cases. The mean

On the Use of Sequence Mining within
Spectrum Based Fault Localisation 5

Table 2: Establish the baseline performance for raw spec-
trum analysis over the 346 defects in the dataset.

MAP = Mean Average Precision, @1 = acc@1, @3 = acc@3,
@5 = acc@5, MWE = Mean Wasted Effort, R = Rank.

Fault locator @1 @3 @5 MAP MWE R
GP13 [38] 63 120 142 0.2780349 96.73 1
Naish2 [21] 63 120 142 0.2776756 96.64 1
M2 [21] 62 118 141 0.2753030 96.32 2
Goodman [21] 61 116 138 0.2695181 16.68 3
Ample2 [21] 64 120 140 0.2764775 101.24 3
T* [30] 62 119 139 0.2744910 96.37 4
Zoltar [28] 61 118 138 0.2735461 96.14 5
Kulczynski2 [21] 61 116 137 0.2718006 96.56 6
Ochiai [3] 61 116 138 0.2693963 98.02 7
Jaccard [7] 61 116 138 0.2695181 104.20 8
Dice [21] 61 116 138 0.2695181 104.20 8
Kulczynski1 [21] 61 116 138 0.2695181 104.20 8
Anderberg [21] 61 116 138 0.2695181 104.20 8
Sørensen
-Dice [21] 61 116 138 0.2695181 104.20 8
GP19 [38] 62 118 139 0.2729868 125.20 9
Arithmetic
Mean [21] 61 118 138 0.2677694 102.93 9
Cohen [21] 61 118 138 0.2678460 105.66 10
Harmonic
Mean [21] 60 115 135 0.2637967 82.19 10
Geometric
Mean [21] 60 115 135 0.2620774 83.72 11
Fleiss [21] 58 107 123 0.2471480 36.29 12
Scott [21] 57 107 125 0.2446414 37.93 13
CBIInc [21] 60 118 135 0.2669550 107.01 13
Barinel [1] 60 118 135 0.2669550 107.11 14
Tarantula [11] 60 118 135 0.2668479 107.03 14
CBISqrt [21] 62 115 136 0.2657316 125.09 15
Rogot2 [21] 60 115 136 0.2642806 139.41 16
Ochiai2 [21] 60 115 136 0.2634117 130.00 17
Wong3′ [21] 42 72 86 0.1785421 22.64 18
Wong3 [34] 42 72 86 0.1785421 22.64 18
Wong2 [34] 41 66 77 0.1582824 16.04 19
Rogot1 [21] 57 107 125 0.2446351 338.34 20
Ample [3] 54 93 116 0.2297198 214.02 21
CBILog [21] 15 28 36 0.0757946 33.22 22
Overlap [21] 41 77 100 0.1857891 178.36 23
Russell
& Rao [21] 38 73 97 0.1802516 177.87 24
Wong1 [34] 38 73 97 0.1802516 177.87 24
Binary [21] 37 69 92 0.1714134 188.00 25
Hamann [21] 41 66 77 0.1582824 367.43 26
Hamming
etc. [21] 41 66 77 0.1582824 437.74 27
Rogers &
Tanimoto [21] 41 66 77 0.1582824 437.74 27
GP02 [38] 23 48 63 0.1268758 277.10 27
M1 [21] 41 66 77 0.1582824 437.74 27
Simple
Matching [21] 41 66 77 0.1582824 437.74 27
Sokal [21] 41 66 77 0.1582824 437.74 27
GP03 [38] 12 23 32 0.0656960 342.97 28
Euclid [21] 7 14 27 0.0521883 428.46 29
Naish1 [21] 1 3 7 0.0200899 419.36 30

wasted effort (MWE), however, reveals that for many cases the fault
localisation is unsatisfactory: a MWE of 96 implies that on average
96 methods need to be inspected before one arrives at the correct
location. This suggests a long tail distribution, where for many
cases the first faulty method is ranked quite low. The value for
mean average precision (MAP) reinforces the problem: a low value

Table 3: Performance improvement for sequenced spectrum
analysis over the 346 defects in the dataset.

MAP = Mean Average Precision, @1 = acc@1, @3 = acc@3,
@5 = acc@5, MWE = Mean Wasted Effort, R = Rank.

Fault locator @1 @3 @5 MAP MWE R
Ample2 103 159 191 0.3925699 25.88 1
Fleiss 103 157 191 0.3874628 16.01 2
T* 102 160 190 0.3936098 31.18 3
M2 102 160 189 0.3933028 31.10 4
Arithmetic
Mean 103 157 189 0.3875244 26.67 5
Goodman 101 157 190 0.3854730 9.83 6
Naish2 101 159 187 0.3918473 29.12 7
Geometric
Mean 102 156 188 0.3866599 24.31 8
Kulczynski2 101 157 189 0.3893806 30.53 9
Ochiai 101 158 191 0.3883824 31.42 10
GP19 103 159 190 0.3929647 34.38 10
GP13 101 159 188 0.3927791 33.46 11
Harmonic
Mean 102 154 186 0.3859800 23.83 12
Scott 101 156 189 0.3821700 16.73 12
Cohen 101 157 189 0.3851854 26.74 13
Jaccard 101 157 190 0.3866061 32.17 14
Dice 101 157 190 0.3866061 32.17 14
Anderberg 101 157 190 0.3866061 32.17 14
Sørensen
-Dice 101 157 190 0.3866061 32.17 14
Ochiai2 101 157 192 0.3863531 35.48 15
Kulczynski1 101 154 187 0.3848006 32.52 16
Rogot2 102 154 186 0.3860920 37.45 17
Wong3′ 89 139 167 0.3391367 12.15 18
CBIInc 96 147 182 0.3738493 28.32 18
Wong3 89 139 167 0.3391367 12.15 18
CBISqrt 99 154 189 0.3817832 34.71 19
Rogot1 101 156 189 0.3820858 61.86 20
Wong2 87 132 157 0.3222868 9.79 21
Zoltar 96 153 183 0.3739687 32.60 22
Tarantula 96 147 182 0.3750226 34.01 23
Barinel 96 147 182 0.3750091 34.03 24
Ample 94 146 176 0.3612457 44.78 25
CBILog 38 63 82 0.1650905 8.73 26
Hamming
etc. 87 132 157 0.3222977 91.93 27
Rogers &
Tanimoto 87 132 157 0.3222977 91.93 27
Hamann 87 132 157 0.3222868 83.37 27
Simple
Matching 87 132 157 0.3222977 91.93 27
Sokal 87 132 157 0.3222977 91.93 27
M1 87 130 155 0.3211702 92.57 28
Russell
& Rao 51 96 118 0.2328541 113.18 29
Wong1 51 96 118 0.2328541 113.18 29
Binary 45 88 109 0.2098345 125.15 30
Overlap 43 80 104 0.2018613 114.95 31
GP02 31 69 88 0.1702866 176.30 32
GP03 31 69 89 0.1632317 175.70 32
Naish1 16 28 45 0.0900345 142.08 33
Euclid 8 18 30 0.0681149 268.55 34

of 0.27 implies that the relative location of other faulty methods (in
cases where fault expands to multiple methods) is also quite low.�

�

�

As baseline performance, we deduce that 18% of faults correspond
with an exact hit (acc@1) while for many faults the heuristic per-
forms reasonably well (acc@3 for 35% of the faults; acc@5 for 41%
of the faults). However, the mean wasted effort is 96.73 which im-
plies that for many cases the fault localisation is unsatisfactory and
suggests a long tail distribution.

SAC 2018, April 9–13, 2018, Pau, France 6

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●●●●●
●●●●●

●●
●●

●●●●●●●●●
●●

●●●
●●
●

●●●●
●●●
●●
●

●●●●●●●●●●●●●●●●●●
●
●
●●

●●

●●●
●●

●●●●●●●
●●●●●

●●●●●●●●●●●
●●●
●●●●●
●
●●●●

●●●●

●●●
●●
●
●

●●●●●
●●

●●●
●●●●●●
●

●●

●
●
●●

●●●
●●●●●
●●
●

●●●
●●●●

●●●●●●
●

●●

●●
●●
●

●

●

●

●●●

●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●

●●●●●

●●●●●●●●●
●●●●●
●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●

●
●●●●●

●●●●●●
●●

●●●
●●
●●
●●●●
●
●

●●
●●
●

●●
●●●●●●
●●●

●●●●
●●
●●
●●●●●
●
●●

●●●
●●●

●●
●●

●●

●●●

●
●
●
●●
●
●
●●●●

●
●

●

●

●

●

1

10

100

1000

Raw Sequenced
Spectrum Analysis

A
bs

ol
ut

e
ra

nk
 (

lo
g

sc
al

e)

Spectrum Analysis: Raw Spectrum Analysis Sequenced Spectrum Analysis

Figure 1: Comparison of the distribution of absolute rank-
ings for faulty methods.

RQ2 – To answer this question, we apply sequenced spectrum
analysis over the same dataset using the same protocol. Thus, we
use the fault locators on all 346 defects and rank them to identify the
best performing one. This allows for a fair comparison between raw
spectrum analysis and sequenced spectrum analysis in the sense
that we choose the optimal configuration for both of them. Table 3
lists the fault locators along with their scores for five evaluation
metrics sorted according to their rank; highlighting fault locators
with the same rank in the same background colour.

Here, we see that Ample2 is the best performing fault locator
with Fleiss, T*, M2, and Arithmetic Mean as close seconds. However,
the scores of Ample2 with sequenced spectrum analysis are better
for all evaluation metrics compared to the raw spectrum analysis.
The value for acc@1 is 103, thus for 103 out of 346 (30%) faults
sequenced spectrum analysis has an exact hit — an absolute 12%
improvement (30% vs 18%). Similar improvements can be seen for
acc@3 (159 out of 346 is 46% compared to 35%) and acc@5 (191 out
of 346 is 55% compared to 41%). Also, the mean wasted effort has
reduced from 96.73 to 25.88, thus on average the fault is now located
on the 25th position in the ranking. The mean average precision
has risen from 0.27 to 0.39 implying that besides the location of the
first faulty methods, the location of other faulty methods has also
improved— the faulty methods are ranked higher in the list .

This suggests that the distribution of the rankings is better for
sequenced spectrum analysis, which is confirmed in Figure 1. In
these violin plots we juxtapose the distributions of absolute ranks
(i.e. the location of the first faulty method) for both variants. There
are some interesting observations in these plots. First, the density
curve in the plot for sequenced spectrum analysis is wide for lower
ranks and quickly narrows for higher ranks, indicating that most
of the faulty methods are located on top of the ranked list. The
density curve for raw spectrum analysis on the other hand narrows
slowly indicating that many faulty methods are also located deeper
in the ranked list — the ranks are spread. Second, the median in
the box plot for sequenced spectrum analysis shows that for 50% of
the faults the faulty methods are located within location 4 in the
ranked lists, whereas for raw spectrum analysis this median is at 9
implying the faulty methods are located more deeply. Finally, the
third quartile for sequenced spectrum analysis is nearly same as the
median for raw spectrum analysis— the highest location where half
of the faults are ranked in raw spectrum analysis, with sequenced

Table 4: Project specific comparison of sequenced spectrum
analysis (SS) versus raw spectrum analysis (RS).

P = Project, SA = Spectrum Analysis (SS vs RS),
Flt. Lctr. = Fault Locator, @1 = acc@1, @3 = acc@3, @5 = acc@5,
MAP = Mean Average Precision, MWE = Mean Wasted Effort.
P SA Flt. Lctr. @1 @3 @5 MAP MWE

Cl
os
ur
e SS Fleiss 17 37 47 0.2236320 30.61

RS GP13 7 15 20 0.1085065 222.89

M
at
h SS Goodman 33 54 69 0.4458375 4.79

RS Goodman 21 45 51 0.3349293 7.92

La
ng SS

Geometric
Mean 41 50 52 0.7294623 1.167

RS GP13 21 43 49 0.5238196 3.78

Ti
m
e SS Ample2 6 10 15 0.2938999 16.15

RS GP13 5 8 9 0.2201962 39.38

Ch
ar
t SS CBISqrt 9 14 16 0.4632694 13.2

RS Tarantula 10 15 16 0.4986104 27.16

Table 5: Significance tests for sequenced spectrum analysis
vs. raw spectrum analysis.

AP = Average Precision, WE = Wasted Effort.
Project Comparison p-value (AP) p-value (WE)
Closure SS > RS 7.849e-10 < 2.2e-16
Math SS > RS 6.983e-05 9.915e-07
Lang SS > RS 2.87e-05 2.096e-05
Time SS > RS 0.01442 0.0009032
Chart SS > RS — 0.2764

RS > SS 0.3638 —

spectrum analysis about 75% of the faults are located at the same
location.

Significance tests for sequenced spectrum analysis versus raw
spectrum analysis on both average precision and wasted effort
metrics have p-values < 2.2e-16, show that sequenced spectrum
analysis is not only better, but that it is significantly better in the
statistics sense of the word.�

�

	
When compared to raw spectrum analysis, sequenced spectrum
analysis gains 12% improvement for exact hit (acc@1) and reduces
the average wasted effort from 96.73 to 25.88. The distribution of
the fault locations is better which results in statistically significant
improvements.

RQ3 –While answering the previous questions, we generalised the
comparison on all the defects together irrespective of the project.
However, as noted by Zeller et. al. there are project-specific vari-
ations that might provide valuable insights [40]. Therefore, we
compare the two spectrum analyses on defects for each individual
project. As done in previous subsections, we first select the best
performing fault locator for each project and for each variant. Due
to space limitations, we omit the results for the selection of the best
performing fault locator and immediately move towards the actual
comparison in Table 4. This table lists the project specific scores
for the five evaluation metrics for the best performing fault locator
for that project. Table 5 also lists the project specific comparison of
p-values for both average precision and wasted effort.

The first interesting observation to make concerns the best per-
forming fault locators: they vary a lot across projects. Naish2 (the

On the Use of Sequence Mining within
Spectrum Based Fault Localisation 7

Chart Closure Lang Math Time

●

●

●●
●
●●

●

●

●

1

10

100

1000

Raw Sequenced Raw Sequenced Raw Sequenced Raw Sequenced Raw Sequenced
Spectrum Analysis

A
bs

ol
ut

e
ra

nk
 (l

og
 s

ca
le

)

Spectrum Analysis: Raw Spectrum Analysis Sequenced Spectrum Analysis

Figure 2: Distributions of absolute ranks of faulty methods for both spectrum analyses for each project.

best performing fault locator for raw spectrum analysis when ap-
plied on all projects together) is never the best performing project-
specific fault locator. And Ample2 (the best performing fault locator
for sequenced spectrum analysis when applied on all projects to-
gether) only appears as the best for the Time project. Thus, a new
set of best performing fault locators has emerged for both raw
spectrum analysis and sequenced spectrum analysis on project by
project basis, illustrating that great care is needed when configuring
such tools.

The second interesting observation in Table 4 is that there is
positive change for the values of acc@1 for both spectrum analyses.
With a new set of best performing fault locators, overall exact hit
(acc@1) for sequenced spectrum analysis has now increased from
103 to 106, while for raw spectrum analysis it has increased from
63 to 64.

Next, we see that —with the exception of project Chart— se-
quenced spectrum analysis outperforms raw spectrum analysis.
Moreover, the p-values in Table 5 confirm that sequenced spectrum
analysis is statistically significantly better for these four projects,
however the p-value for average precision in project Time is in-
significant. A deeper analysis of the project Chart reveals that
sequenced spectrum analysis is better for mean wasted effort while
raw spectrum analysis is better for mean average precision and
acc@1. However, as seen in Table 5 the better score for mean wasted
effort with sequenced spectrum analysis is statistically significant
while the better score for mean average precision with raw spec-
trum analysis is statistically insignificant.

We again turn to violin plots to explore these differences in more
detail. Figure 2 provides distributions of absolute ranks of first
faulty method in the ranked lists for both spectrum analyses for
each project. We readily observe that shapes of the two distribu-
tions for the project Chart are nearly the same, suggesting that
sequenced spectrum analysis slightly improves upon raw spectrum
analysis. However, sequenced spectrum analysis improves upon
raw spectrum analysis for the remaining four projects— with signif-
icant improvement for the project Lang. Yet, we observe that the
distribution of absolute ranks with sequenced spectrum analysis
for project Time has some outliers.

�
�

�
�

On project by project basis, sequenced spectrum analysis performs
better than raw spectrum analysis for four projects. For the fifth
project the results are, for practical purposes, the same. Moreover,
the best performing fault locator varies a lot across the projects.

6 RELATEDWORK
The Tarantula tool provided the foundation for research on spec-
trum based fault localisation [11]. Afterwards, several researchers
made attempts to increase the effectiveness of spectrum based fault
localisation, including work on (a) finding the optimal fault loca-
tors, (b) changing the spectrum analysis, (c) using state-of-the-art
information retrieval techniques to learn to rank, and (d) test-suite
reduction and diagnosability.

Fault locators. Abreu et. al. introduced Ochiai, used in the molec-
ular biology domain, into spectrum based fault localisation and
demonstrated better performance [3]. Steimann et. al. defined and
evaluated T* (a variant of Tarantula) and there as well demon-
strated better performance [30]. Lucia et. al. applied 20 well-known
association measures from data mining on fault localisation and
concluded that 10 out of 20 association measures were comparable
to Tarantula and Ochiai [19]. Naish et. al. proposed a couple of
fault locators through a theoretical model and established that they
performed better than existing ones [21]. Later studies confirmed
that one (Naish2) is among the best performing fault locators [4, 23],
which is corroborated in this comparison. Yoo evolved an entirely
different set of fault locators (GP01 . . .GP30) that performed better
than existing ones [38]. Work by Le et. al. finds that GP13 and GP19
perform better [4].

Hit-Spectra. Yilmaz et. al. proposed time-spectrum as a variation
for spectrum analysis [36]. Instead of coverage of methods, time-
spectrum uses traces of method execution times collected from both
passing and failing tests. The potential causes of faults are identi-
fied as deviations of failing tests from behaviour models created
from time spectra collected in passing test runs. Dallmeier et. al.
extracted sequence of method calls by sliding a window of fixed
size over execution traces of classes to identify faulty classes [9].
Likewise, Laghari et. al. pinpoint faulty classes but adopting itemset
mining [15]. However, in our approach, we use sequence mining

SAC 2018, April 9–13, 2018, Pau, France 8

to mine the sequences from call traces of methods to locate faulty
methods and not classes.

Learning to rank. Xuan et. al. proposed MULTRIC, a learning-
based approach which combines multiple ranking metrics to learn
and then rank [35]. They demonstrated on seeded faults that MUL-
TRIC improved upon existing fault locators. Similarly, Le et. al. [4]
propose Savant, a learning to rank approach which exploited in-
ferred likely method invariants mined from passing and failing test
cases. They find that Savant is more effective than state of the art
on real faults.

Specification mining. Runtime traces have been used to learn API
specifications such as legal method call sequences. These specifi-
cations are used for purposes including documentation, learning
the APIs, and also for bug detection. OCD learns and enforces tem-
poral specifications over method call sequence [10]. The algorithm
uses a predefined template which specifies a sequence of only two
method calls and operates over a finite window on the trace. The
tool is reported to have detected anomalies as violations of inferred
sequences in Eclipse and Ant, though the anomalies did not re-
sult in program crashes. Pradel and Gross infer specification for
Java standard library from method traces. They use method calls
as object collaborations to infer API specifications as finite state
machines which model the legal method call sequence [24]. JMiner
traces Java programs to generate parametric specifications. The
specifications produced with JMiner are reported to have detected
a few bugs in open source Java programs [18]. Similarly, we mine
call sequences for methods from both passing and failing tests and
statistically compare these sequences to pinpoint faulty methods.

7 THREATS TO VALIDITY
As with all empirical research, we identify those factors that may
jeopardise the validity of our results and the actions we took to
reduce or alleviate the risk. Consistent with the guidelines for
case studies research (see [26, 37]), we organise them into four
categories.
Construct validity. In this research, we compare sequenced spec-
trum analysis against raw spectrum analysis. To reduce the risk on
construct validity, we evaluated with five different metrics assess-
ing different perspectives on what is deemed better. The use of an
absolute metric (wasted effort) and also acc@n alleviates concerns
on relative measures [22]. While the evaluation of fault localisa-
tion on mean average precision has implication for developers who
search deep in the ranked list to find more relevant faulty methods
and for automated fault repair techniques.
Internal validity. When selecting the best fault locator which
performs better in all five evaluation metrics, we use simplified
method of first ranking the fault locators on individual metrics,
then computing the mean of their ranks, and finally rank them on
their mean rank. This may not be the best solution but we ensured
that it was better than simple aggregation method of summation of
metric scores.
External validity. We use several evaluation metrics together
which implies a stringent comparison. Evaluation on a single metric
alone may result in a different interpretations. A notable example
in this paper is comparison on project Chart (see Table 4). If only
evaluated on Mean Wasted Effort, the sequenced spectrum analysis

is better than raw spectrum analysis. However, when comparing
on several metrics together the result is different. This observa-
tion signals that the evaluation metric used to evaluate the fault
localisation has an effect on its accuracy. Thus, it is also unwise to
generalise the findings, but instead metric-specific insights should
be explored.
Reliability. All the tools involved in this case study (i.e. creat-
ing the traces, calculating the ranked lists etc.) have been imple-
mented and tested for three years by the first author. Moreover,
for sequenced spectrum analysis we used the MARBLES [8] algo-
rithm which has been already tested by the creators of MARBLES.
However, lurking faults in any of the tools may affect the precise
rankings.

8 CONCLUSION
In this paper, we presented sequenced spectrum analysis— a class of
spectrum based fault localisation which modifies the hit-spectrum
by incorporating series of method calls mined from the execution
traces. To compare sequenced spectrum analysis against the state
of the art, we created a suite of fault localisation heuristics with
47 known fault locators and evaluated them to establish a base-
line with the best performing one. Then, we compared sequenced
spectrum analysis against raw spectrum analysis and conclude that
sequenced spectrum analysis is better than raw spectrum analysis,
regardless of whether we evaluate for the whole dataset or whether
we evaluate on a project specific basis.

During this comparison, we also learned that the best perform-
ing fault locator varies quite a lot depending on the project, the
variant of spectrum analyses (raw spectrum analysis and sequenced
spectrum analysis), and even the experimental setting (all defects,
defects per project basis). Finally, the evaluation metrics do also
play a role: we observed some cases where the best performing
fault locator varies with the evaluation metric used (Mean Average
Precision, Mean Wasted Effort, acc@n).

These observations have few important consequences for future
research in fault localisation. First, choosing the best fault locator
is highly context specific, depending on both the project and the
experimental set-up, therefore these factors need to be considered
before generalising the conclusions. Second, the evaluation metric
used to assess the performance of fault localisation does also matter
when drawing the conclusions.
Acknowledgments. Thanks to Boris Cule for helping with MARBLES
algorithm. This work is sponsored by (a) the Higher Education Commission
of Pakistan under a project titled “Strengthening of University of Sindh (Fac-
ulty Development Program)"; (b) Flanders Make vzw, the strategic research
centre for the manufacturing industry.

On the Use of Sequence Mining within
Spectrum Based Fault Localisation 9

REFERENCES
[1] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2009. Spectrum-Based

Multiple Fault Localization. In Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering (ASE ’09). IEEE Computer Society,
Washington, DC, USA, 88–99. https://doi.org/10.1109/ASE.2009.25

[2] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van Gemund. 2009. A
Practical Evaluation of Spectrum-based Fault Localization. Journal of Systems and
Software 82, 11 (Nov. 2009), 1780–1792. https://doi.org/10.1016/j.jss.2009.06.035

[3] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2007. On the Accuracy
of Spectrum-based Fault Localization. In Proceedings of the Testing: Academic and
Industrial Conference Practice and Research Techniques - MUTATION (TAICPART-
MUTATION ’07). IEEE Computer Society, Washington, DC, USA, 89–98. http:
//dl.acm.org/citation.cfm?id=1308173.1308264

[4] Tien-Duy B. Le, David Lo, Claire Le Goues, and Lars Grunske. 2016. A Learning-
to-rank Based Fault Localization Approach Using Likely Invariants. In Proceedings
of the 25th International Symposium on Software Testing and Analysis (ISSTA 2016).
ACM, New York, NY, USA, 177–188. https://doi.org/10.1145/2931037.2931049

[5] Robert V. Binder. 1999. Testing Object-oriented Systems: Models, Patterns, and
Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[6] José Campos, André Riboira, Alexandre Perez, and Rui Abreu. 2012. GZoltar: An
Eclipse Plug-in for Testing and Debugging. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2012). ACM,
New York, NY, USA, 378–381. https://doi.org/10.1145/2351676.2351752

[7] Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric Brewer.
2002. Pinpoint: Problem Determination in Large, Dynamic Internet Services.
In Proceedings of the 2002 International Conference on Dependable Systems and
Networks (DSN ’02). IEEE Computer Society, Washington, DC, USA, 595–604.
http://dl.acm.org/citation.cfm?id=647883.738238

[8] Boris Cule, Nikolaj Tatti, and Bart Goethals. 2014. Marbles: Mining association
rules buried in long event sequences. Statistical Analysis and Data Mining: The
ASA Data Science Journal 7, 2 (2014), 93–110.

[9] Valentin Dallmeier, Christian Lindig, and Andreas Zeller. 2005. Lightweight
Defect Localization for Java. In Proceedings of the 19th European Conference on
Object-Oriented Programming (ECOOP’05). Springer-Verlag, Berlin, Heidelberg,
528–550. https://doi.org/10.1007/11531142_23

[10] Mark Gabel and Zhendong Su. 2010. Online Inference and Enforcement of Tem-
poral Properties. In Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 1 (ICSE ’10). ACM, New York, NY, USA, 15–24.
https://doi.org/10.1145/1806799.1806806

[11] James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of Test
Information to Assist Fault Localization. In Proceedings of the 24th International
Conference on Software Engineering (ICSE ’02). ACM, New York, NY, USA, 467–477.
https://doi.org/10.1145/581339.581397

[12] Jonathan Aldrich Joshua Sushine, James D. Herbsleb. 2015. Searching the State
Space: A Qualitative Study of API Protocol Usability. In Proceedings of the Inter-
national Conference on Program Comprehension (ICPC).

[13] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis
(ISSTA 2014). ACM, New York, NY, USA, 437–440. https://doi.org/10.1145/2610384.
2628055

[14] Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. 2016. Practitioners’
Expectations on Automated Fault Localization. In Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis (ISSTA 2016). ACM, New York,
NY, USA, 165–176. https://doi.org/10.1145/2931037.2931051

[15] Gulsher Laghari, Alessandro Murgia, and Serge Demeyer. 2015. Localising Faults
in Test Execution Traces. In Proceedings of the 14th International Workshop on
Principles of Software Evolution (IWPSE 2015). ACM, New York, NY, USA, 1–8.
https://doi.org/10.1145/2804360.2804361

[16] Gulsher Laghari, Alessandro Murgia, and Serge Demeyer. 2016. Fine-tuning
SpectrumBased Fault Localisationwith FrequentMethod Item Sets. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software Engineering
(ASE 2016). ACM, New York, NY, USA, 274–285. https://doi.org/10.1145/2970276.
2970308

[17] Tien-Duy B. Le, David Lo, and Ferdian Thung. 2015. Should I Follow This Fault
Localization Tool’s Output? Empirical Softw. Engg. 20, 5 (Oct. 2015), 1237–1274.
https://doi.org/10.1007/s10664-014-9349-1

[18] Choonghwan Lee, Feng Chen, and Grigore Roşu. 2011. Mining Parametric
Specifications. In Proceedings of the 33rd International Conference on Software
Engineering (ICSE ’11). ACM, New York, NY, USA, 591–600. https://doi.org/10.
1145/1985793.1985874

[19] Lucia, D. Lo, Lingxiao Jiang, and A. Budi. 2010. Comprehensive evaluation
of association measures for fault localization. In Software Maintenance (ICSM),
2010 IEEE International Conference on. 1–10. https://doi.org/10.1109/ICSM.2010.
5609542

[20] Lucia, David Lo, and Xin Xia. 2014. Fusion Fault Localizers. In Proceedings of the
29th ACM/IEEE International Conference on Automated Software Engineering (ASE

’14). ACM, New York, NY, USA, 127–138. https://doi.org/10.1145/2642937.2642983
[21] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A Model for Spectra-

based Software Diagnosis. ACM Trans. Softw. Eng. Methodol. 20, 3, Article 11
(Aug. 2011), 32 pages. https://doi.org/10.1145/2000791.2000795

[22] Chris Parnin and Alessandro Orso. 2011. Are Automated Debugging Techniques
Actually Helping Programmers?. In Proceedings of the 2011 International Sym-
posium on Software Testing and Analysis (ISSTA ’11). ACM, New York, NY, USA,
199–209. https://doi.org/10.1145/2001420.2001445

[23] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D.
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and improving fault
localization. In ICSE 2017, Proceedings of the 39th International Conference on
Software Engineering. Buenos Aires, Argentina.

[24] Michael Pradel and Thomas R. Gross. 2009. Automatic Generation of Object Usage
Specifications from Large Method Traces. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering (ASE ’09). IEEE
Computer Society, Washington, DC, USA, 371–382. https://doi.org/10.1109/ASE.
2009.60

[25] Martin P. Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan
Ratchford. 2013. Automated API Property Inference Techniques. IEEE Trans.
Softw. Eng. 39, 5 (May 2013), 613–637. https://doi.org/10.1109/TSE.2012.63

[26] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting
case study research in software engineering. Empirical Softw. Engineering 14, 2
(2009), 131–164.

[27] R.K. Saha, M. Lease, S. Khurshid, and D.E. Perry. 2013. Improving bug localization
using structured information retrieval. In Automated Software Engineering (ASE),
2013 IEEE/ACM 28th International Conference on. 345–355. https://doi.org/10.
1109/ASE.2013.6693093

[28] Alberto González Sánchez. 2007. Automatic Error Detection Techniques Based
on Dynamic Invariants. Master’s thesis. Delft University of Technology, the
Netherlands. http://swerl.tudelft.nl/twiki/pub/Main/AlbertoGonzalezSanchez/
thesis_gonzalez.pdf

[29] F. Steimann and M. Frenkel. 2012. Improving Coverage-Based Localization of
Multiple Faults Using Algorithms from Integer Linear Programming. In Software
Reliability Engineering (ISSRE), 2012 IEEE 23rd International Symposium on. 121–
130. https://doi.org/10.1109/ISSRE.2012.28

[30] Friedrich Steimann, Marcus Frenkel, and Rui Abreu. 2013. Threats to the Validity
and Value of Empirical Assessments of the Accuracy of Coverage- based Fault
Locators. In Proceedings of the 2013 International Symposium on Software Testing
and Analysis (ISSTA 2013). ACM, New York, NY, USA, 314–324. https://doi.org/
10.1145/2483760.2483767

[31] Jingxuan Tu, Lin Chen, Yuming Zhou, Jianjun Zhao, and Baowen Xu. 2012.
Leveraging Method Call Anomalies to Improve the Effectiveness of Spectrum-
Based Fault Localization Techniques for Object-Oriented Programs. In Proceedings
of the 2012 12th International Conference on Quality Software (QSIC ’12). IEEE
Computer Society, Washington, DC, USA, 1–8. https://doi.org/10.1109/QSIC.
2012.30

[32] Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. 2007. Detecting
Object Usage Anomalies. In Proceedings of the the 6th Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering (ESEC-FSE ’07). ACM, New York, NY, USA,
35–44. https://doi.org/10.1145/1287624.1287632

[33] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
Survey on Software Fault Localization. IEEE Transactions on Software Engineering
42, 8 (Aug. 2016), 707–740. https://doi.org/10.1109/TSE.2016.2521368

[34] W. EricWong, YuQi, Lei Zhao, and Kai-YuanCai. 2007. Effective Fault Localization
Using Code Coverage. In Proceedings of the 31st Annual International Computer
Software and Applications Conference - Volume 01 (COMPSAC ’07). IEEE Computer
Society, Washington, DC, USA, 449–456. https://doi.org/10.1109/COMPSAC.2007.
109

[35] J. Xuan and M. Monperrus. 2014. Learning to Combine Multiple Ranking Metrics
for Fault Localization. In Software Maintenance and Evolution (ICSME), 2014 IEEE
International Conference on. 191–200. https://doi.org/10.1109/ICSME.2014.41

[36] Cemal Yilmaz, Amit Paradkar, and Clay Williams. 2008. Time will tell: fault
localization using time spectra. In In ICSE Conference Proceedings. 81–90.

[37] Robert K. Yin. 2002. Case Study Research: Design and Methods, 3 edition. Sage
Publications.

[38] Shin Yoo. 2012. Evolving Human Competitive Spectra-based Fault Localisation
Techniques. In Proceedings of the 4th International Conference on Search Based
Software Engineering (SSBSE’12). Springer-Verlag, Berlin, Heidelberg, 244–258.
https://doi.org/10.1007/978-3-642-33119-0_18

[39] Andreas Zeller. 2005. Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann.

[40] Andreas Zeller, Thomas Zimmermann, and Christian Bird. 2011. Failure is a Four-
letterWord: A Parody in Empirical Research. In Proceedings of the 7th International
Conference on Predictive Models in Software Engineering (Promise ’11). ACM, New
York, NY, USA, Article 5, 7 pages. https://doi.org/10.1145/2020390.2020395

https://doi.org/10.1109/ASE.2009.25
https://doi.org/10.1016/j.jss.2009.06.035
http://dl.acm.org/citation.cfm?id=1308173.1308264
http://dl.acm.org/citation.cfm?id=1308173.1308264
https://doi.org/10.1145/2931037.2931049
https://doi.org/10.1145/2351676.2351752
http://dl.acm.org/citation.cfm?id=647883.738238
https://doi.org/10.1007/11531142_23
https://doi.org/10.1145/1806799.1806806
https://doi.org/10.1145/581339.581397
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2931037.2931051
https://doi.org/10.1145/2804360.2804361
https://doi.org/10.1145/2970276.2970308
https://doi.org/10.1145/2970276.2970308
https://doi.org/10.1007/s10664-014-9349-1
https://doi.org/10.1145/1985793.1985874
https://doi.org/10.1145/1985793.1985874
https://doi.org/10.1109/ICSM.2010.5609542
https://doi.org/10.1109/ICSM.2010.5609542
https://doi.org/10.1145/2642937.2642983
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1145/2001420.2001445
https://doi.org/10.1109/ASE.2009.60
https://doi.org/10.1109/ASE.2009.60
https://doi.org/10.1109/TSE.2012.63
https://doi.org/10.1109/ASE.2013.6693093
https://doi.org/10.1109/ASE.2013.6693093
http://swerl.tudelft.nl/twiki/pub/Main/AlbertoGonzalezSanchez/thesis_gonzalez.pdf
http://swerl.tudelft.nl/twiki/pub/Main/AlbertoGonzalezSanchez/thesis_gonzalez.pdf
https://doi.org/10.1109/ISSRE.2012.28
https://doi.org/10.1145/2483760.2483767
https://doi.org/10.1145/2483760.2483767
https://doi.org/10.1109/QSIC.2012.30
https://doi.org/10.1109/QSIC.2012.30
https://doi.org/10.1145/1287624.1287632
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/COMPSAC.2007.109
https://doi.org/10.1109/COMPSAC.2007.109
https://doi.org/10.1109/ICSME.2014.41
https://doi.org/10.1007/978-3-642-33119-0_18
https://doi.org/10.1145/2020390.2020395

	Abstract
	1 Introduction
	2 Background
	3 Sequenced Spectrum Analysis
	3.1 Collecting the Trace
	3.2 Obtaining Call Sequences
	3.3 Calculating the Hit-Spectrum
	3.4 Ranking Methods

	4 Evaluation
	4.1 Dataset
	4.2 Evaluation Metrics
	4.3 Experimental Protocol

	5 Results
	6 Related Work
	7 Threats to Validity
	8 Conclusion
	References

